
J
H
E
P
0
7
(
2
0
0
8
)
1
3
7

Published by Institute of Physics Publishing for SISSA

Received: June 6, 2008

Accepted: July 18, 2008

Published: July 31, 2008

Non-geometric string backgrounds and worldsheet

algebras

Nick Halmagyi

Enrico Fermi Institute, University of Chicago,

Chicago, IL 60637, U.S.A.

E-mail: halmagyi@theory.uchicago.edu

Abstract: Using worldsheet Hamiltonian methods we derive a charge algebra which gen-

eralizes the Courant bracket to include fluxes of general index type. This is achieved by

coupling a bi-vector to the usual string Hamiltonian. This bracket is useful to describe

so-called non-geometric backgrounds and has been discussed in the mathematics literature

by Dmitry Roytenberg.

Keywords: Flux compactifications, Bosonic Strings.

mailto:halmagyi@theory.uchicago.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
0
7
(
2
0
0
8
)
1
3
7

Contents

1. Introduction 2

2. Torus with H-flux and T-duality 3

3. The Courant bracket 4

3.1 From the worldsheet 5

3.2 Conserved charges 6

4. The Roytenberg bracket 7

4.1 Some brief mathematical preliminaries 7

4.2 The Hamiltonian 8

4.3 The charge algebra 8

4.3.1 Vector-vector bracket 9

4.3.2 Vector-form bracket 9

4.3.3 Form-form bracket 9

4.3.4 The total bracket 10

4.4 Conserved charges 11

5. T
3 with H flux and T-duality 11

5.1 T3H3 11

5.2 Twisted torus 12

5.3 Q-space 12

5.4 R-space 13

5.5 Why are the currents not conserved? 14

6. Future directions 15

A. Conventions 17

B. The twisting of the symplectic form 17

C. The Koszul bracket 17

D. The WZ-Poisson sigma model 18

– 1 –



J
H
E
P
0
7
(
2
0
0
8
)
1
3
7

1. Introduction

The motivation for the current work comes from a class of string backgrounds which have

been known as non-geometric backgrounds since the pioneering work [1]. This moniker

comes from the fact that unlike manifolds, which are sewn together patch to patch by

diffeomorphisms, these backgrounds allow for the possibility that they are sewn together

using more general elements of the stringy duality group. On circle bundles over circles

this duality group is O(d, d).

It is well known that the metric and fluxes of string theory should be treated somewhat

equally and to this effect string duality allows for these to be transformed into each other.

Indeed the duality group of compactified string theory is enlarged significantly by the

spacetime fluxes. The central tenet of the non-geometric theme advocated in [1] is that

since these enlarged duality groups include and extend diffeomorphisms, one should allow

for string backgrounds which are locally geometric but can be patched together by elements

of this enlarged duality group.

Various examples have by now been put forward, in the original work [1] a non-

geometric version of K3 was studied with the SYZ T 2 fibration used to locally model

a torus compactification. There is a somewhat simpler example of a T 2 fibered over S1 [2 –

4] and in fact in the latter of these papers, the authors have succeeded in finding a modular

invariant worldsheet CFT which describes this background.

One more example which unveils some of the relevant structures is to consider a T 3

with N units of H-flux (from here on this will be referred to as T3H3). This is not

a conformal background since it clearly does not satisfy Einstein’s equation, however it

can be rendered conformal by embedding it is the full ten dimensional string theory and

this retains the essential features relevant for the current discussion [5]. This background

appears to admit three isometries however when one utilizes any one of these to perform

T-duality, there are apparently then only two isometries of the background. This disagrees

with intuition garnered from a mountain of previous work on dualities in string theory.

One of the known duality frames is a twisted torus and another is a prime example of a

non-geometric background known as the Q-space. We will discuss this example at some

length in the current work and in fact we use it as inspiration for some formal developments.

However the structures developed here are not restricted to this example and are ultimately

best thought of as somewhat independent from it.

In this work we study non-geometric structures by coupling a bi-vector to the usual

string model. Our main result is a worldsheet derivation of the Roytenberg bracket. This

bracket is a map

[., .]R : TX ⊕ T ∗
X × TX ⊕ T ∗

X → TX ⊕ T ∗
X (1.1)

which generalizes the better known Courant bracket. A worldsheet derivation of the

Courant bracket (to be more precise the Dorfman bracket, see section 3) has been provided

by Alekseev and Strobl [6] where they realize this bracket as the current algebra of the non-

supersymmetric string model. This calculation considered the standard action and as such

had both metric and B-field, the key addition to the story provided in this paper is the twist-
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ing by a bi-vector. As a result of this twisting, there are extra co-efficients in the resulting

algebra of worldsheet charges precisely corresponding to those in the Roytenberg bracket [7].

We verify that this bracket correctly describes the various known duality frames of the

T3H3 example. We also discuss the final duality frame of this example, the conjectural

R-space but are not able to provide the bi-vector for this background. On the other hand,

we cannot rule out the possibility that the R-space can be described successfully in this

formalism.

This paper is organized as follows: In section 2 we review some general aspects of non-

geometric string backgrounds and the T3H3 backgrounds and its sibling duality frames

in particular. In section 3 we review the worldsheet derivation of the Courant bracket.

Section 4 contains the main result of the paper, a worldsheet derivation of the Roytenberg

bracket. Section 5 is devoted to fleshing out the T3H3 duality frames in explicit detail to

demonstrate the utility of the current approach. The appendix contains a brief exposition

on the WZ-Poisson sigma model.

2. Torus with H-flux and T-duality

We will warm up by considering the T3H3 background and its duality frames. Two some-

what separate issues occur in this context, firstly we encounter shortcomings of the local

T-duality rules of Buscher [8] and secondly we find in a certain duality frame (the Q space)

a simple example of a non-geometric background. Global aspects of T-duality and this du-

ality sequence in particular have been studied in several more mathematical papers [9 – 12].

The problem first appears in the T3H3 background when one chooses a gauge for the

B-field,

ds2 = dw2 + dx2 + dy2,

B = wdx ∧ dy,

⇒ H = dw ∧ dx ∧ dy.

At this point, the background exhibits only two symmetries (translation in the x and y

directions) although we know that the gauge invariant couplings come from the H-field

which couples to the string worldsheet via a WZW term. So we can surmise that in the

fiull string theory there are actually three symmetries.

After T-dualizing along the y direction one obtains the purely metric background

(called the twisted torus)

ds2 = dw2 + dx2 + (dy − Nwdx)2

B = 0. (2.1)

In this frame basis there in a non-trivial bracket on the vector fields and one interprets

this by saying that the integral H-flux quanta have been transformed into geometric flux.

To see all components of the structure constants one has to use the Courant bracket (see

section 5.1)

– 3 –



J
H
E
P
0
7
(
2
0
0
8
)
1
3
7

One can perform a further T-duality on the twisted torus obtaining the background

ds2 = dw2 +
1

1 + N2w2
(dx2 + dy2),

B =
Nw

1 + N2w2
dx ∧ dy. (2.2)

At first order in an expansion in N this is the original T3H3 background however with the

N -dependent corrections, the space is globally not a manifold. This space can be thought

of a T 2 fibration over S1 where upon winding around the base S1 the complexified Kahler

form (ρ = B + iJ) of the fiber shifts as

1

ρ
→

1

ρ
+ N. (2.3)

As a result the transitions functions mix the B-field and the metric. In addition the volume

shifts as w → w + 1 so regions where the volume approaches the string scale and there the

background receives large stringy corrections.

A useful notation was introduced in [13] in which this background is referred to as the

Q-space. The basic idea is as follows: T-duality exchanges winding and momentum and

as such swaps an upper index for a lower one. So in this chain of dualities the quantized

charges transform as

Habc
T
↔ fa

bc
T
↔ Qab

c . (2.4)

An important and unresolved question is whether there exists a duality which would

produce a charge with three indices raised

Qab
c

?
↔ Rabc. (2.5)

Although some evidence for this was produced by studying the superpotential of the four di-

mensional effective supergravity of this background [13], it utilized the Gukov-Vafa-Witten

superpotential which is only valid when gravity is a good approximation for the internal

dimensions. As mentioned above gravity is not a good approximation for the Q-space. We

will argue in a later section that while this is problematic, it is still not quite the essence

of the paradox.

Regardless of whether this final duality is in fact valid, one can consider the possibility

of backgrounds with general charges H, f,Q,R although no explicit examples are currently

known. The present work will demonstrate that by considering backgrounds in the presence

of a bi-vector, one can in principle produce the above charges.

3. The Courant bracket

The Courant bracket is a natural generalization of the Lie bracket on vector fields, taking

as its arguments sections of TX ⊕T ∗
X . A clear exposition is given in section 3 of Gualtieri’s

thesis [14]. It has appeared in the physics literature through generalized complex geometry,

where closure under the Courant bracket implies integrability of the generalized complex

structure.
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The co-ordinate independent expression for the Courant bracket is:

[u + α, v + β]C = [u, v] + Luβ − Lvα −
1

2
d(ιuβ − ιvα) + H(u, v, .) (3.1)

where u, v ∈ Γ(TX) and α, β ∈ Γ(T ∗
X). The Courant bracket is skew symmetric but does

not necessarily satisfy the Jacobi identity, however the Jacobi identity will be satisfied if

TX and T ∗
X are Dirac structures. There is another bracket on TX ⊕T ∗

X called the Dorfman

bracket which is occasionally confused with the Courant Bracket

[u + α, v + β]D = [u, v] + Luβ − ιvdα + H(u, v, .). (3.2)

The Courant bracket is the skew-symmetrization of the Dorfman bracket. In fact the

Courant bracket and Dorfman bracket differ by a total derivative

[u + α, v + β]C = [u + α, v + β]D − d〈(u, α), (v, β)〉 (3.3)

where 〈., .〉 is the symmetric nondegenerate bilinear form on TX ⊕ T ∗
X . When evaulated

on Dirac structures, the two brackets are equal since the condition for a Dirac structure is

〈(u, α), (v, β)〉 = 0.

In a nice paper by Alekseev and Strobl [6], they showed how to derive the Dorfman

bracket from a worldsheet current algebra calculation. In fact to get the exact result

they required the currents to be formed from Dirac structures. As we will show below,

by computing instead the algebra of charges, the distinction between the Courant and

Dorfman brackets is lost since by (3.3) they differ by total derivative and so the algebra of

charges is a realization of the Courant bracket.

From a string theory point of view, the key feature of the Courant bracket is that its

group of automorphisms is a semi-direct product of diffeomorphisms and shifts by closed

B-fields.

3.1 From the worldsheet

The Hamiltonian is

HP =
1

2

∫

dσ
(

Gij(pi + Bik∂xk)(pj + Bjl∂xl) + Gij∂xi∂xj
)

(3.4)

and with this form of the Hamiltonian the symplectic form is in the Darboux form

ω =

∫

dσδxi ∧ δpi. (3.5)

It is convenient to change co-ordinates on phase space

pi → pi − Bij∂σxj (3.6)

which results in the following Poisson brackets (see appendix B):

{xi(σ), xj(σ′)} = 0,

{xi(σ), pj(σ
′)} = δi

jδ(σ − σ′), (3.7)

{pi(σ), pj(σ
′)} = −Hijk∂xkδ(σ − σ′).
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In these co-ordinates, the most general currents are

J(u,α) = uipi + αj∂σxj (3.8)

and of course the associated charges are given by Q(u,α) =
∫

dσJ(u,α)(σ). The first term in

(3.8) is a vector field on X and the second term a one form on X. The charge algebra is

then found to be

{Q(u,α),Q(v,β)} =

∫

dσdσ′{(uipi + αj∂σxj)(σ), (vipi + βj∂σ′xj)(σ′)}

= −

∫

dσ
(

[u, v]ipi + (uk∂kβj − vk∂kαj + ukvlHklj)∂xj
)

(σ)

−

∫

dσdσ′

(

ui(σ)βi(σ
′)∂σ′δ(σ − σ′) − vi(σ′)αi(σ))∂σδ(σ − σ′)

)

= −

∫

dσ
(

[u, v]ipi+((Luβ−Lvα−
1

2
d(ιuβ−ιvα))j +ukvlHklj)∂xj

)

(σ)

= −Q[(u,α),(v,β)]C (3.9)

where we recall now the expression for the Lie derivative

Lu = ιud + d ιu. (3.10)

It is important that we have included the spatial integration and thus computed the charge

algebra not the current algebra, this sets the total derivative terms in (3.1) to zero and as

such Lu ∼ ιud and we recall the explicit co-ordinate expression

ιudα = uk∂kαidxi − uk∂iαkdxi. (3.11)

So we have shown that the Courant bracket arises from a worldsheet charge algebra.

The Courant bracket satisfies the Jacobi identity only when evaluated on Dirac structures

however since this worldsheet computation is a Poisson bracket, it must always satisfy the

Jacobi identity. This conflict is resolved by computing the charge algebra instead of the

current algebra and thus total derivatives terms in the bracket vanish.

3.2 Conserved charges

Having established a connection to the Courant bracket for these charges it is worth con-

sidering when they are actually conserved. One finds that

{Q(u,α),H} =

∫

dσLu(Gij)
(

GikGjlpkpl − ∂xi∂xj
)

(σ)

+2

∫

dσ
(

− uiHijl + (∂jαl − ∂lαj)
)

Gjkpk∂xl(σ),

so we see that this is conserved if

LuG = 0, LuB = d(α − ιuB). (3.12)

We now see that the very stringy addition of the term αi∂σxi to the usual currents in (3.8)

and thus the appearance of T ∗
X is due to the NS B-field.
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It should be stressed however that the Courant bracket appears on the worldsheet

regardless of whether the currents are conserved. Indeed, in the twisted torus example

and also the Q-space, we will derive the correct charge algebra but only two of the three

currents are conserved.

4. The Roytenberg bracket

We now wish to consider the generalization of the Courant bracket to include a bi-vector

Πij , which we will call the Roytenberg bracket. We will generalize the worldsheet current

algebra calculation of the previous section to derive this bracket.

4.1 Some brief mathematical preliminaries

The bracket which we are set to study and which will possibly buttress the theory of

non-geometric string backgrounds has in fact been discovered some time ago by Dimitry

Roytenberg [7]. The Roytenberg bracket is an extension of the Courant bracket to include

a bi-vector and also a three vector.

In a particular basis, the Roytenberg bracket is

[ea, eb] = f c
ab ec + Habce

c

[ea, e
b] = Q bc

a ec + f b
a ce

c (4.1)

[ea, eb] = Rabcec + Qab
ce

c

where we have introduced notation which differs from that of Roytenberg but is hopefully

clear. One should compare this expression to the formulas at the top of page 4 in the nice

review paper [15]. The expressions for the structure constants will be given once we have

calculated the bracket from the worldsheet, see eq. (4.23). From a mathematical point of

view the Roytenberg bracket gives families of examples of Courant algebroids.

The Courant bracket is clearly asymmetric with respect to TX and T ∗
X since it is

twisted by a three form H but not by a three vector. The Roytenberg bracket rectifies this

somewhat although it does not restore the symmetry completely. One step in restoring

this symmetry is to introduce a differential [16] which maps p-vectors to (p + 1)-vectors to

go with the usual (twisted)-exterior derivative dH

dH = d + H ∧ (4.2)

dΠ = [Π, .]S + ∧2ΠH, (4.3)

where Π is a bi-vector and [., .]S is the Schouten bracket. The differential dΠ will square

to zero iff the twisted Poisson condition holds [17]

1

2
[Π,Π]S = ∧3ΠH. (4.4)

A very curious fact is that this condition (4.4) appears as the component of the Rijk

co-efficient in (4.1) which comes from the bi-vector Π. In the math literature, they allow

for a three vector in addition which is not equal to dΠΠ. While in this work we will

find a concise physical interpretation for the bi-vector Π, it is less clear physically how to

incorporate another arbitrary (dΠ closed) three-vector.

– 7 –
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4.2 The Hamiltonian

The Hamiltonian (3.4) can be rewritten by trading the two form field Bij for a two vector

Πij

HΠ = gijpipj + gkl(∂xk + Πkipi)(∂xl + Πljpj). (4.5)

The data (g,Π) can be related to the data (G,B) as follows

Gij = (g − ΠgΠ)−1
ij , (4.6)

Bij = GikgjlΠ
kl,

= (g − ΠgΠ)−1
ik gjlΠ

kl. (4.7)

Interestingly, one obtains the same formulas again by considering the Lagrangian

LA = gijAi ∧ ∗Aj + ΠijAi ∧ Aj + Ai ∧ dxi (4.8)

and integrating out the Ai fields to obtain the usual Lagrangian

LP = Gijdxi ∧ ∗dxj + Bijdxi ∧ dxj. (4.9)

This fact was first pointed out in [18] where it was also shown to agree with the relation

between open string data (g,Π) and closed string data (G,B) [19].

We are primarily concerned with the Hamiltonian formulation since we are set to derive

an explicit expression for the worldsheet current algebra. In full generality it is conceivable

to have both a two form B-field and a two vector Π, the resulting Hamiltonian would be

HB,Π = gij(pi + Bik∂xk)(pj + Bjl∂xl)

+gkl(∂xk + Πki(pi + Bim∂xm))(∂xl + Πlj(pj + Bjn∂xn)). (4.10)

We can perform the same change of co-ordinates (3.6), obtain the same Hamiltonian in a

compressed form

HB,Π = gijpipj + gkl(∂xk + Πkipi)(∂xl + Πljpj) (4.11)

and then the Poisson brackets are twisted as in (3.7).

4.3 The charge algebra

We are now ready to compute the current algebra associated to (4.11). The most general

worldsheet current is

J(u,α)(σ) = uipi(σ) + αi(∂xi + Πikpk)(σ) (4.12)

where (ui, αi) are in general allowed to be functions of the xj . We will address the issue

of whether this current is conserved in the next section, in the meantime we are free to

compute the algebra. It is convenient to perform this calculation in three parts, the bracket

of a vector-vector, a vector-one form and a one form-one form.

– 8 –
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4.3.1 Vector-vector bracket

We first compute the vector-vector bracket,
∫

dσdσ′{uip(σ)i, v
jpj(σ

′)}

= −

∫

dσ
(

[u, v]ipi + uivjHijk∂xk
)

(σ)

= −

∫

dσ
(

(

[u, v]l − u[ivj]HijkΠ
kl

)

pl + u[ivj]Hijk(∂xk + Πklpl)
)

(σ). (4.13)

We see here that the Lie bracket on vector fields has been deformed in the combined

presence of a bi-vector and an H-field while the H-coefficient is insensitive to the bi-vector.

4.3.2 Vector-form bracket

Here we calculate the term
∫

dσdσ′{αj(∂xj + Πjipi)(σ), vkpk(σ
′)}.

One piece is familiar from the Courant bracket
∫

dσdσ′{αj∂xj(σ), vkpk(σ
′)}

=

∫

dσ

(

Lvα −
1

2
dιvα

)

i

∂xi(σ).

The extra term we need is
∫

dσdσ′{αjΠ
jipi(σ), vkpk(σ

′)} =

∫

dσ
(

[v, αΠ]ipi − αjΠ
jivkHikl∂xl

)

(4.14)

where αΠ is the vector field αjΠ
ji∂i and [., .] is the usual Lie bracket on vector fields. and

so in total we get
∫

dσdσ′{αj(∂xj + Πjipi), v
kpk}

=

∫

dσ

((

[v, αΠ]l −

(

Lvα −
1

2
dιvα

)

k

Πkl + αmviHijkΠ
jmΠkl

)

pl

+

((

Lvα −
1

2
dιvα

)

l

− αjv
kΠjiHikl

)

(∂xl + Πlmpm)

)

(σ). (4.15)

4.3.3 Form-form bracket

We now calculate the term
∫

dσdσ′
{

αj

(

∂xj + Πjipi

)

, βk

(

∂xk + Πklpl

)}

(4.16)

which has the interpretation of a Poisson bracket of two one-forms. This term is entirely

new since without the twisting by the bi-vector Πij , we have

{αj∂xj , βk∂xk} = 0

– 9 –
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in the Courant bracket.

First we need the following two terms
∫

dσdσ′{αi∂xi(σ), βjΠ
jkpk(σ

′)}

=

∫

dσ(βjΠ
jk∂kαi)∂xi(σ) +

∫

dσdσ′αi(σ)βjΠ
ji(σ′)∂σδ(σ − σ′) (4.17)

∫

dσdσ′{αjΠ
jkpk(σ), βi∂xi(σ′)}

= −

∫

dσ(αjΠ
jk∂kβi)∂xi(σ) −

∫

dσdσ′ αjΠ
ji(σ)βi(σ

′)∂σ′δ(σ − σ′). (4.18)

Since total derivatives on the worldsheet vanish, the sum of these two pieces is equal to

the Koszul bracket (see appendix C)
∫

dσ
(

(

βj∂kαi − αj∂kβi

)

Πjk − (βj∂iαk − αj∂iβk)Π
jk

)

∂xi(σ)

=

∫

dσ[α, β]Π,i∂xi(σ). (4.19)

The key to finding the Koszul bracket on the nose is once again that we are computing the

charge algebra not the current algebra.

For the remaining term in (4.16) we find
∫

dσdσ′{αiΠ
ikpk(σ), βjΠ

jlpl(σ
′)} = −

∫

dσ
(

[αΠ, βΠ]ipi + αiβjΠ
ikΠjlHklm∂xm

)

(4.20)

Some rearrangement is needed to combine all the above terms into something respectable,

more importantly something which can be compared to the bracket in [7]. One subtle

point is that although we can dispense with (target space) total derivatives when they are

contracted with ∂xi, when they are contracted with Πijpj the resulting object is no longer

a worldsheet total derivative and so does not vanish.

Combining all these terms together we get
∫

dσdσ′{αj(∂xj + Πjipi)(σ), βk(∂xk + Πklpl)(σ
′)}

=

∫

dσ
(

[α, β]Π,i − αjβkΠ
jmΠknHmni

)

(∂xi + Πilpl)(σ)

−

∫

dσ αiβj

(1

2
[Π,Π]ijkS − ΠilΠjnΠkmHlnm

)

pk(σ) (4.21)

where [., .]S is the Schouten bracket.

4.3.4 The total bracket

It is worth writing down the full Roytenberg bracket as calculated in the previous three

subsections. For comparison with the math literature this is best done in co-ordinate free

notation. We have calculated the charge algebra

{Q(uα), Q(v,β)} = −Q[(uα),(v,β)]R (4.22)

– 10 –
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where

[u + α, v + β]R

= [u, v] − HΠ(u, v)

+Luβ − Lvα −
1

2
d(ιuβ − ιvα) + ΠH(α, v, .) − ΠH(β, u, .)

−[v, αΠ] + [u, βΠ] + (Lvα − Luβ +
1

2
d(ιuβ − ιvα))Π + ∧2ΠH(α, ., v) − ∧2ΠH(β, ., u)

−[α, β]Π + ∧2ΠH(α, β, .)

+H(u, v, .) +
(1

2
[Π,Π]S − ∧3ΠH

)

(α, β, .) . (4.23)

The first two lines in this expression correspond to the f coefficients (the first line is a

vector, the second a one-form), the next two lines are the Q coefficients (the third line is a

vector, the fourth a one-form) and the final line has the H and R coefficients. Of course,

this expression reduces to the Courant bracket (3.1) when Π = 0.

4.4 Conserved charges

It is of interest to know when these charges are conserved, in fact the calculation is really

quite straightforward. Locally, one can rewrite the current

J(u,α) = uipi + αi(∂xi + Πijpj)

= u′ipi + αi∂xi (4.24)

where u′i = ui + Πijpj. This is just a calculational trick, as mentioned earlier the twisting

by a bi-vector results from a global issue not addressed in the current work. Then as

mentioned in section 4.2, the Hamiltonian HB,Π can be rewritten as the Hamiltonian (3.4)

and so the calculation of section 3.2 goes through unchanged, resulting in the conditions

Lu′(G) = 0, Lu′(B) = d(α − ιu′B) (4.25)

which can be expressed as a condition on (g,Π) by using (4.6) and (4.7).

5. T
3 with H flux and T-duality

In this section we will explicitly work through the various T -dual frames of a three torus

with H3 flux on it. It is important to realize that as discussed at length in section 2, the

currents are not always conserved nonetheless we find the correct algebra.

5.1 T3H3

The starting point of this duality sequence is a T 3 with N units of H3 flux. The metric

and B-field are

ds2 = dw2 + dx2 + dy2

B = w dx ∧ dy. (5.1)

The structure constants are given by

Hwxy = ǫwxy, f = Q = R = 0. (5.2)

– 11 –



J
H
E
P
0
7
(
2
0
0
8
)
1
3
7

5.2 Twisted torus

The twisted torus is slightly more non-trivial. The metric is

ds2 = dw2 + dx2 + (dy − Nwdx)2 (5.3)

and thus the frames are

e1 = dw, e2 = dx, e3 = dy − Nwdx. (5.4)

The vector fields dual to these frames are

e1 = ∂w, e2 = ∂x + Nw∂y, e3 = ∂y (5.5)

which satisfy the Lie bracket

[e1, e2] = Ne3. (5.6)

The rest of the Courant bracket is

[e1, e
3]C = −Ne2 (5.7)

[e2, e
3]C = Ne1. (5.8)

So we see from this that the structure constants

fw
xy = ǫw

xy, H = Q = R = 0 (5.9)

where we have raised indices on ǫabc with the flat frame metric.

5.3 Q-space

The Q-space has the metric and B-field

ds2 = dw2 +
1

1 + N2w2
(dx2 + dy2),

B =
Nw

1 + N2w2
dx ∧ dy. (5.10)

However to derive the Q-coefficients we need to trade this for a metric and bi-vector:

ds2 = dw2 + dx2 + dy2

Π = Nw∂x ∧ ∂y. (5.11)

Note that Π is Poisson. This bi-vector was first observed in the context of open string data

in [20] and elaborated on in [21].

The basis of frames and dual vector fields are

e1 = dw, e2 = dx, e3 = dy,

e1 = ∂w, e2 = ∂x, e3 = ∂y

– 12 –
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and the Roytenberg bracket now gives

[e2, e3]R = ∂wΠxye1

= Ne1,

[e1, e
2]R = Ne3,

[e1, e
3]R = −Ne2

with cyclic permutations and the bracket on all other basis elements vanishes. This demon-

strates that the structure constants are

Qwx
y = ǫwx

y, H = f = R = 0. (5.12)

This result is satisfying since we have resolved the following paradox: the H-coefficients

are zero but there is H flux in the solution (5.10). By trading the B-field for a bi-vector we

get the desired co-efficients. It is interesting that this H flux is not integral when contracted

with the frames to give a scalar however when the B-field is traded for a bi-vector, we get

integral Q-coefficients. This could well be a clue as to how we can impose global constraints

on a given background and determine how we choose between a bi-vector and a two form

B-field. Since locally the bi-vector and B-field can be traded for each other this is a serious

problem which must be addressed.

Whereas before the trade for the bi-vector we had O(d, d) valued transition functions

and thus were in the realm of non-geometricity, after the trade we appear to have a per-

fectly fine manifold. The bi-vector shifts as w → w + 1 but the structure constants are

invariant. So while before, we were wary that the compactification appeared to have re-

gions of string scale curvature, in the bi-vector formalism the space appears to be at large

volume everywhere. Alternatively, if one trades the B-field of section 5.1 for bi-vector, then

the resulting solution appears to be non-geometric.

So we have agreement with [13] where it was conjectured the H structure constants

would be transformed into these Q structure constants. The algebra in question in that

work arises in a very different context. In particular it requires RR fields, which are

conspicuously absent in the Roytenberg bracket.

We also have agreement with [10] where it was demonstrated that this space should

be a bundle of non-commutative T 2’s fibered over S1. The bi-vector (5.11) has support on

the T 2 fiber and is non-trivially fibered over the base S1.

5.4 R-space

If one could complete this sequence of T-dualities one would end up with structure constants

Rwxy = ǫwxy, H = f = Q = 0. (5.13)

This R-space is a mysterious object, there is scant evidence that if we could make sense

of it that this could subsequently be embedded in string theory at all. Perhaps the most

pressing question is whether the space admits a geometric description even locally. A

compelling argument was presented in [13] that this would not be the case and goes as
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follows: the T3H3 space cannot support a wrapped 3-brane since the H-flux obstructs

this. After allegedly performing three T -dualities, this statement is converted into the fact

that one could not probe the space with D0-branes. As such one concludes that it admits

no local geometric description.

Perhaps the most concrete results available on the R-space are by Bouwknegt,

Hannabuss, Mathai and Rosenberg [9 – 11]. They follow a standard mathematical pro-

cedure which is to study the space of functions on a space instead of the space itself. Once

they understand T -duality at the level of the K-theory of these function algebras, they find

that the algebra corresponding to the R-space is non-associative.

With the results of the current paper in hand, one is led to contemplate whether one

can use the bi-vector formalism to understand the R-space. It is straightforward to find a

bi-vector which gives Rwxy = ǫwxy,

Πyw = Nw, Πxw = 1, Πxy = 0. (5.14)

This is not sufficient to declare victory since we need that Q = 0 (it is straightforward to get

H, f = 0). This may or may not be possible, at least at the time of writing this is not clear.

There is one term in the Q-coefficients which must be non-zero in order to have non-

vanishing R, namely we need

αiβj∂kΠ
ij 6= 0, (5.15)

it seems possible for this to happen and still have [α, β]Π = 0 as long as the one forms α

and β are not closed.

One potential obstacle to finding the R-space in this manner is the following: if we set

N = 0 the third T dual of a flat torus is again a flat torus. So we expect that if we can

write a local description for the R-space that to zero-th order in N it is just a flat metric,

this is certainly true for the twisted torus and the Q-space . However that R structure

constants are quadratic in Π (when H = 0) and thus if Π ∼ N then it would seem that

we have the scaling R ∼ N2 at least. The bi-vector (5.14) violates this observation but of

course doesn’t give Q = 0 anyways.

Nonetheless if one could find a bi-vector which gave the correct structure constants

one would then claim to have agreement with [11] since having non-vanishing R structure

constants is the presence of an obstruction to the Jacobi-identity being satisfied. In a

loose sense, this is tantamount to the space being non-associative. To understand the R-

space it is probably necessary to understand how to further couple a three vector into the

Roytenberg bracket. Whilst mathematically this is a natural operation [7], physically it is

hard to see how to incorporate this into the string sigma model.

5.5 Why are the currents not conserved?

The problem encountered in the above example is that while certain currents are conserved

before duality, they are not conserved after duality. This brings into question whether this

duality is in fact an exact equivalence. It should be stressed that this problem is not confined

to the Q-space, it is already present in the twisted torus. The solution we will propose

here is that the metric and B field do not appear on equal footing in the Hamiltonian.
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The metric and B-field are couplings in the sigma model but as spacetime fields they

exhibit certain gauge invariances. The B-field can be shifted by any closed two-form and

the spacetime physics is also invariant under change of co-ordinates. The gauge symmetries

of the B field are trivially absorbed by coupling the B field to the worldsheet by a WZ

term, since there it is the field strength H = dB which appears. The worldsheet couplings

which come from the space time metric however do not appear in any gauge invariant form.

This we argue is the reason for the missing duality frame.

Since the Lie derivative is the generator of diffeomorphisms, the conditions for a current

to be conserved (3.12) are that the metric and B-field behave in a certain way under gauge

transformations of the metric. In the above example, the only time this is satisfied for all

three currents is when the sigma model can be formulated such that the parameter N just

appears in a gauge invariant quantity, namely the T3H3 space. This hints that if one could

formulate the sigma model in terms of gauge invariant quantities then the final duality of

the sequence would become manifest. From the current investigation the natural analogue

of the H field is the f,Q,R. Our conclusion is that if there is a way to reformulate the

sigma model more directly in terms of the Roytenberg bracket then all three symmetries

would be manifest in each duality frame and thus the R space would be accessible. The

resolution might in fact be that since M-theory geometrizes T -duality, one should instead

look for a membrane action which can be written in terms of the Roytenberg bracket.1

6. Future directions

The most immediate issue in need of attention is a global understanding of the presence of

the bi-vector. As already mentioned, locally the B-field and the bi-vector are interchange-

able, there must be global conditions which determine which is present. The Q-space

example might give a clue as to how this works [24]. Since (gij ,Π
ij) also appear in the

study of open strings [19], it is important to understand if they are truly open string

couplings in the current setting.

It would be also interesting to develop a way to study supergravity reductions in

the presence of a bi-vector. The Courant bracket appears as the gauge algebra of the

four dimensional gauged supergravity obtained from reduction on a twisted torus with H-

flux [25]. It would be interesting if we could somehow get the full Roytenberg bracket in

this manner. This idea has been considered somewhat in reverse in [26] however since we

now understand the physical origin of the explicit expressions for the Roytenberg bracket,

this should be readdressed.

It is highly desirable to obtain a version of the Gukov-Vafa-Witten superpotential [27]

for bi-vector backgrounds. As mentioned in section 5.3, the Q-space appears to be a

(potentially) large volume manifold with a bivector background, as such the gravity ap-

proximation is fine. It would then be possible to revisit the work [13] with more confidence

in the effective four dimensional gravity expressions.

1[22] contains an attempt in this direction however the author considers a somewhat different deformation

of the Courant bracket than considered here and in [7]. Generalizing the work [23] to include Q asnd R

coefficients might be a reasonable strategy
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One of the motivations for the current work was the study of generalized complex

geometries obtained as bi-vector deformations of Calabi-yau geometries [28, 29]. The ex-

amples which can be explicitly written down are the gravity duals to the β deformation [30]

of certain N = 1 SYM theories. In this case the bi-vector which deforms the pure spinors

is exactly the bi-vector in the non-commutative product of the field theory and in the

correct angular co-ordinates the bi-vector is constant. It has been pointed out that that

bi-vector which drives the elusive cubic deformation of N = 4 SYM cannot be constant

in any co-ordinates [31]. It would be interesting to understand in which sense the former

case is gauge trivial and the latter is gauge non-trivial. In an ideal world understanding

this bi-vector better might lead to a solution generating technique which we could use to

construct the gravity solution.

There is another interesting approach to studying non-geometric backgrounds devel-

oped by Chris Hull and collaborators in what is by now large body of work (see for exam-

ple [32, 26, 33]). They proceed by doubling the geometry on which the duality group acts.

In this way a geometric description is obtained for these non-geometric backgrounds and

this is presumably related in some fashion to the approach taken in this paper. It should

be fruitful to work this out exactly.

Another interesting avenue to explore is the addition of RR fluxes. In a very inter-

esting couple of papers, techniques for deforming Calabi-Yau backgrounds by RR fluxes

on the worldsheet using the hybrid string [34] have been fleshed out [35, 36]. One partic-

ularly interesting aspect of that work is the parallel with generalized complex geometry,

the worldsheet variables are in the form perfectly suited to describe supergravity in the

generalized complex geometry variables [37]. It will be interesting to understand how to

combine these ideas with the addition of a bi-vector to the worldsheet theory.

We have presented a computationally useful way of exploring the landscape of non-

geometric string vacua in that we have given explicit formulas for the fluxes of mixed indices.

There are still many issues left unresolved and exploring them should be quite exciting.
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A. Conventions

The signature on the worldsheet is (−,+) and ǫστ = +1. The conventions for antisym-

metrization are

u[ivj] =
1

2
(uivj − ujvi). (A.1)

B. The twisting of the symplectic form

As mentioned in the body of the paper, it is convenient to perform a coordinate transfor-

mation on phase space which in turn alters the symplectic form by a shift:

ω =

∮

dσδxi ∧ δ(pi − Bij∂xj).

We expand this additional term as

∮

dσδxi ∧ δ(Bij∂xj) =

∮

dσδxi ∧
(

∂σxjδ(Bij) + Bijδ(∂σxj)
)

=

∮

dσδxi ∧

(

∂kBij∂σxjδxk −
1

2
∂kBij∂σxk δxj

)

= −
1

2

∮

dσ Hijk∂xkδxi ∧ δxj , (B.1)

where of course

Hijk = ∂iBjk + ∂jBki + ∂kBij.

So in total the twisted symplectic form is

ω =

∮

dσ

(

δxi ∧ δpi +
1

2
Hijk∂xkδxi ∧ δxj

)

(B.2)

and from this follows the twisted Poisson brackets (3.7).

C. The Koszul bracket

When deriving the Roytenberg bracket in the main text, we need a few details about the

Koszul bracket which we now review. A good reference is [38]. The Koszul bracket is

less well known than the Lie bracket on vector fields but it is designed to mimick the

Lie bracket on the space of differential forms on a Poisson manifold. The co-ordinate

independent expression for the Koszul bracket when evaluated on one forms is

[α, β]Π = LΠαβ − LΠβα + d(Π(α, β)). (C.1)

Much like how the Schouten bracket is the extension of the Lie bracket to sections of ∧∗TX ,

the Koszul bracket can be extended to arbitrary differential forms (sections of ∧∗T ∗
X).
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It is worth unpacking (C.1) a little bit since all the expressions derived in this paper

are manifestly co-ordinate dependent. We have

[α, β]Π = ιΠαdβ − ιΠβdα + d(ιΠαβ − ιΠβα + Π(α, β))

= Πijαj(∂iβk − ∂kβi)dxk − Πijβj(∂iαk − ∂kαi)dxk

−∂k(Π
ijαiβj)dxk

=
(

Πij(αj∂iβk − βj∂iαk) − αiβj∂kΠ
ij
)

dxk.

D. The WZ-Poisson sigma model

The twisting of one forms by a bi-vector first appeared in the WZ-Poisson sigma model [39].

The WZ-Poisson sigma model has the action

S =

∫

d2x
(

Ai ∧ dxi +
1

2
ΠijAi ∧ Aj +

1

2
Bijdxi ∧ dxj

)

(D.1)

and is obviously a topological theory since the worldsheet metric does not appear in the

Lagrangian. If one can integrate out the Ai fields then the theory reduces to the Polyakov

action with gij → 0.

The equations of motion are

dxk = −ΠkjAj

dAi = −
1

2

(

∂iΠ
jkAj ∧ Ak + Hijk dxj ∧ dxk

)

(D.2)

which is a coupled system of equations and gives

0 = d
(

dxk + ΠkjAj

)

= ∂lΠ
kjdxl ∧ Aj −

1

2
Πkl∂lΠ

ijAi ∧ Aj −
1

2
ΠklHlmndxm ∧ dxn

= −
1

2

(1

2
[Π,Π]ijk + ΠilΠjmΠknHlmn

)

Ai ∧ Aj (D.3)

This can be solved in two ways, either

1

2
[Π,Π]ijk + ΠilΠjmΠknHlmn = 0 (D.4)

or else it is a constraint on the Ai field space.

If we set B = 0 then the WZ-Poisson sigma model reduces to the Poisson sigma model,

we have just demonstrated that in this case Π actually need not be Poisson for consistency

of the theory, it seems that in the literature Π is assumed to be Poisson from the get-go.

So with H 6= 0 the same idea holds but Poisson is replaced by twisted Poisson.

This is interesting when considered in the context of the worldsheet derivation of the

Roytenberg bracket, although constructing the Hamiltonian is somewhat more involved

here due to the first order action (thus the momentum define constraints on phase space).

The reason for revisiting this point is that the math literature on this topic was largely
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inspired by [39] and they find that the constraint (D.4) is equivalent to the condition for a

Dirac structure.

If this constraint would always hold, then it would appear that the R coefficients

constructed from a bi-vector would always vanish. However we see that even in the WZ-

Poisson sigma model these couplings are not necessarily required to satisfy (D.4) at least

on a subset of field space. It would be interesting to understand in the non-topological

model with a bi-vector the meaning of whether (D.4) is satisfied or not.
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